Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.433
Filtrar
1.
PLoS One ; 19(4): e0298065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626211

RESUMO

Anoxia in the mammalian brain leads to hyper-excitability and cell death; however, this cascade of events does not occur in the anoxia-tolerant brain of the western painted turtle, Chrysemys picta belli. The painted turtle has become an important anoxia-tolerant model to study brain, heart, and liver function in the absence of oxygen, but being anoxia-tolerant likely means that decapitation alone is not a suitable method of euthanasia. Many anesthetics have long-term effects on ion channels and are not appropriate for same day experimentation. Using whole-cell electrophysiological techniques, we examine the effects of the anesthetic, Alfaxalone, on pyramidal cell action potential amplitude, threshold, rise and decay time, width, frequency, whole cell conductance, and evoked GABAA receptors currents to determine if any of these characteristics are altered with the use of Alfaxalone for animal sedation. We find that Alfaxalone has no long-term impact on action potential parameters or whole-cell conductance. When acutely applied to naïve tissue, Alfaxalone did lengthen GABAA receptor current decay rates by 1.5-fold. Following whole-animal sedation with Alfaxalone, evoked whole cell GABAA receptor current decay rates displayed an increasing trend with 1 and 2 hours after brain sheet preparation, but showed no significant change after a 3-hour washout period. Therefore, we conclude that Alfaxalone is a suitable anesthetic for same day use in electrophysiological studies in western painted turtle brain tissue.


Assuntos
Anestésicos , Hipóxia Encefálica , Pregnanodionas , Tartarugas , Animais , Tartarugas/fisiologia , Receptores de GABA-A/metabolismo , Células Piramidais/metabolismo , Hipóxia/metabolismo , Anestésicos/farmacologia , Mamíferos
2.
Proc Natl Acad Sci U S A ; 121(18): e2314541121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657049

RESUMO

Recent evidence has demonstrated that the transsynaptic nanoscale organization of synaptic proteins plays a crucial role in regulating synaptic strength in excitatory synapses. However, the molecular mechanism underlying this transsynaptic nanostructure in inhibitory synapses still remains unclear and its impact on synapse function in physiological or pathological contexts has not been demonstrated. In this study, we utilized an engineered proteolysis technique to investigate the effects of acute cleavage of neuroligin-2 (NL2) on synaptic transmission. Our results show that the rapid cleavage of NL2 led to impaired synaptic transmission by reducing both neurotransmitter release probability and quantum size. These changes were attributed to the dispersion of RIM1/2 and GABAA receptors and a weakened spatial alignment between them at the subsynaptic scale, as observed through superresolution imaging and model simulations. Importantly, we found that endogenous NL2 undergoes rapid MMP9-dependent cleavage during epileptic activities, which further exacerbates the decrease in inhibitory transmission. Overall, our study demonstrates the significant impact of nanoscale structural reorganization on inhibitory transmission and unveils ongoing modulation of mature GABAergic synapses through active cleavage of NL2 in response to hyperactivity.


Assuntos
Moléculas de Adesão Celular Neuronais , Proteínas do Tecido Nervoso , Sinapses , Transmissão Sináptica , Moléculas de Adesão Celular Neuronais/metabolismo , Sinapses/metabolismo , Animais , Transmissão Sináptica/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteólise , Humanos , Proteínas de Membrana/metabolismo , Receptores de GABA-A/metabolismo , Camundongos , Hipocampo/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Epilepsia/patologia , Ratos , Metaloproteinase 9 da Matriz/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(15): e2318041121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568976

RESUMO

Stable matching of neurotransmitters with their receptors is fundamental to synapse function and reliable communication in neural circuits. Presynaptic neurotransmitters regulate the stabilization of postsynaptic transmitter receptors. Whether postsynaptic receptors regulate stabilization of presynaptic transmitters has received less attention. Here, we show that blockade of endogenous postsynaptic acetylcholine receptors (AChR) at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier, developmentally transient glutamatergic phenotype. Further, expression of exogenous postsynaptic gamma-aminobutyric acid type A receptors (GABAA receptors) in muscle cells stabilizes an earlier, developmentally transient GABAergic motor neuron phenotype. Both AChR and GABAA receptors are linked to presynaptic neurons through transsynaptic bridges. Knockdown of specific components of these transsynaptic bridges prevents stabilization of the cholinergic or GABAergic phenotypes. Bidirectional communication can enforce a match between transmitter and receptor and ensure the fidelity of synaptic transmission. Our findings suggest a potential role of dysfunctional transmitter receptors in neurological disorders that involve the loss of the presynaptic transmitter.


Assuntos
Receptores Colinérgicos , Sinapses , Sinapses/metabolismo , Receptores Colinérgicos/metabolismo , Transmissão Sináptica/fisiologia , Neurônios Motores/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Neurotransmissores/metabolismo , Colinérgicos , Receptores Pré-Sinápticos
4.
J Agric Food Chem ; 72(12): 6189-6202, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501577

RESUMO

The hexapeptide YPVEPF with strong sleep-enhancing effects could be detected in rat brain after a single oral administration as we previously proved. In this study, the mechanism and molecular effects of YPVEPF in the targeted stress-induced anxiety mice were first investigated, and its key active structure was further explored. The results showed that YPVEPF could significantly prolong sleep duration and improve the anxiety indexes, including prolonging the time spent in the open arms and in the center. Meanwhile, YPVEPF showed strong sleep-enhancing effects by significantly increasing the level of the GABA/Glu ratio, 5-HT, and dopamine in brain and serum and regulating the anabolism of multiple targets, but the effects could be blocked by bicuculline and WAY100135. Moreover, the molecular simulation results showed that YPVEPF could stably bind to the vital GABAA and 5-HT1A receptors due to the vital structure of Tyr-Pro-Xaa-Xaa-Pro-, and the electrostatic and van der Waals energy played dominant roles in stabilizing the conformation. Therefore, YPVEPF displayed sleep-enhancing and anxiolytic effects by regulating the GABA-Glu metabolic pathway and serotoninergic system depending on distinctive self-folding structures with Tyr and two Pro repeats.


Assuntos
Ansiolíticos , Distúrbios do Início e da Manutenção do Sono , Ácido gama-Aminobutírico/análogos & derivados , Ratos , Camundongos , Animais , Caseínas/metabolismo , Receptores de GABA-A/metabolismo , Serotonina , Ansiolíticos/farmacologia , Ansiedade
5.
Commun Biol ; 7(1): 345, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509283

RESUMO

The scaffolding A-kinase anchoring protein 150 (AKAP150) is critically involved in kinase and phosphatase regulation of synaptic transmission/plasticity, and neuronal excitability. Emerging evidence also suggests that AKAP150 signaling may play a key role in brain's processing of rewarding/aversive experiences, however its role in the lateral habenula (LHb, as an important brain reward circuitry) is completely unknown. Using whole cell patch clamp recordings in LHb of male wildtype and ΔPKA knockin mice (with deficiency in AKAP-anchoring of PKA), here we show that the genetic disruption of PKA anchoring to AKAP150 significantly reduces AMPA receptor-mediated glutamatergic transmission and prevents the induction of presynaptic endocannabinoid-mediated long-term depression in LHb neurons. Moreover, ΔPKA mutation potentiates GABAA receptor-mediated inhibitory transmission while increasing LHb intrinsic excitability through suppression of medium afterhyperpolarizations. ΔPKA mutation-induced suppression of medium afterhyperpolarizations also blunts the synaptic and neuroexcitatory actions of the stress neuromodulator, corticotropin releasing factor (CRF), in mouse LHb. Altogether, our data suggest that AKAP150 complex signaling plays a critical role in regulation of AMPA and GABAA receptor synaptic strength, glutamatergic plasticity and CRF neuromodulation possibly through AMPA receptor and potassium channel trafficking and endocannabinoid signaling within the LHb.


Assuntos
Hormônio Liberador da Corticotropina , Habenula , Animais , Masculino , Camundongos , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Endocanabinoides , Habenula/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de GABA-A/metabolismo , Transmissão Sináptica/fisiologia
6.
Int Rev Neurobiol ; 175: 75-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38555121

RESUMO

The target of alcohol's effect on the central nervous system has been sought for more than 50 years in the brain's GABA system. The behavioral and emotional effects of alcohol in humans and rodents are very similar to those of barbiturates and benzodiazepines, and GABAA receptors have been shown to be one of the sites of alcohol action. The mechanisms of GABAergic inhibition have been a hotspot of research but have turned out to be complex and controversial. Genetics support the involvement of some GABAA receptor subunits in the development of alcohol dependence and in alcohol use disorders (AUD). Since the effect of alcohol on the GABAA system resembles that of a GABAergic positive modulator, it may be possible to develop GABAergic drug treatments that could substitute for alcohol. The adaptation mechanisms of the GABA system and the plasticity of the brain are a big challenge for drug development: the drugs that act on GABAA receptors developed so far also may cause adaptation and development of additional addiction. Human polymorphisms should be studied further to get insight about how they affect receptor function, expression or other factors to make reasonable predictions/hypotheses about what non-addictive interventions would help in alcohol dependence and AUD.


Assuntos
Alcoolismo , Humanos , Alcoolismo/genética , Alcoolismo/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Benzodiazepinas/farmacologia , Etanol/farmacologia , Ácido gama-Aminobutírico/metabolismo
7.
J Neuroendocrinol ; 36(4): e13378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38482748

RESUMO

Neurosteroids have been implicated in the pathophysiology of post-traumatic stress disorder (PTSD). Allopregnanolone is reduced in subsets of individuals with PTSD and has been explored as a novel treatment strategy. Both direct trauma exposure and witnessed trauma are risk factors for PTSD; however, the role of neurosteroids in the behavioral outcomes of these unique experiences has not been explored. Here, we investigate whether observational fear is associated with a reduced capacity for endogenous neurosteroidogenesis and the relationship with behavioral outcomes. We demonstrated that mice directly subjected to a threat (foot shocks) and those witnessing the threat have decreased plasma levels of allopregnanolone. The expression of a key enzyme involved in endogenous neurosteroid synthesis, 5α-reductase type 2, is decreased in the basolateral amygdala, which is a major emotional processing hub implicated in PTSD. We demonstrated that genetic knockdown or pharmacological inhibition of 5α-reductase type 2 exaggerates the behavioral expression of fear in response to witnessed trauma, whereas oral treatment with an exogenous, synthetic neuroactive steroid gamma-aminobutyric acid-A receptor positive allosteric modulator with molecular pharmacology similar to allopregnanolone (SGE-516 [tool compound]) decreased the behavioral response to observational fear. These data implicate impaired endogenous neurosteroidogenesis in the pathophysiology of threat exposure, both direct and witnessed. Further, these data suggest that treatment with exogenous 5α-reduced neurosteroids or targeting endogenous neurosteroidogenesis may be beneficial for the treatment of individuals with PTSD, whether resulting from direct or witnessed trauma.


Assuntos
Neuroesteroides , Animais , Camundongos , Pregnanolona/metabolismo , Receptores de GABA-A/metabolismo , Medo/fisiologia , Emoções , Colestenona 5 alfa-Redutase/metabolismo
8.
Cell Rep ; 43(3): 113834, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38431842

RESUMO

Striatal dopamine axons co-release dopamine and gamma-aminobutyric acid (GABA), using GABA provided by uptake via GABA transporter-1 (GAT1). Functions of GABA co-release are poorly understood. We asked whether co-released GABA autoinhibits dopamine release via axonal GABA type A receptors (GABAARs), complementing established inhibition by dopamine acting at axonal D2 autoreceptors. We show that dopamine axons express α3-GABAAR subunits in mouse striatum. Enhanced dopamine release evoked by single-pulse optical stimulation in striatal slices with GABAAR antagonism confirms that an endogenous GABA tone limits dopamine release. Strikingly, an additional inhibitory component is seen when multiple pulses are used to mimic phasic axonal activity, revealing the role of GABAAR-mediated autoinhibition of dopamine release. This autoregulation is lost in conditional GAT1-knockout mice lacking GABA co-release. Given the faster kinetics of ionotropic GABAARs than G-protein-coupled D2 autoreceptors, our data reveal a mechanism whereby co-released GABA acts as a first responder to dampen phasic-to-tonic dopamine signaling.


Assuntos
Autorreceptores , Dopamina , Camundongos , Animais , Ácido gama-Aminobutírico/farmacologia , Axônios/metabolismo , Corpo Estriado/metabolismo , Receptores de GABA-A/metabolismo , Camundongos Knockout , Homeostase
9.
Stem Cell Res ; 76: 103372, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458029

RESUMO

Developmental and epileptic encephalopathies (DEEs) are early-onset conditions that cause intractable seizures and developmental delays. Missense variants in Gamma-aminobutyric acid type A receptor (GABAAR) subunits commonly cause DEEs. Ahring et al. (2022) showed a variant in the gene that encodes the delta subunit (GABRD) is strongly associated with the gain-of-function of extrasynaptic GABAAR. Here, we report the generation of two patient-specific human induced pluripotent stem cells (hiPSC) lines with (i) a de novo variant and (ii) a maternal variant, both for the pathogenic GABRD c.872 C>T, (p.T291I). The variants in the generated cell line were corrected using the CRISPR-Cas9 gene editing technique (respective isogenic control lines).


Assuntos
Epilepsia , Células-Tronco Pluripotentes Induzidas , Humanos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Epilepsia/genética , Mutação de Sentido Incorreto , Edição de Genes
10.
Virus Res ; 344: 199366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548137

RESUMO

Gamma-aminobutyric acid (GABA) signals in various non-neuronal cells including hepatocytes and some immune cells. Studies, including ours, show that type A GABA receptors (GABAARs)-mediated signaling occurs in macrophages regulating tissue-specific functions. Our recent study reveals that activation of GABAARs in liver macrophages promotes their M2-like polarization and increases HBV replication in mice. This short article briefly summarizes the GABA signaling system in macrophages and discusses potential mechanisms by which GABA signaling promotes HBV replication.


Assuntos
Vírus da Hepatite B , Fígado , Macrófagos , Transdução de Sinais , Replicação Viral , Ácido gama-Aminobutírico , Animais , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/genética , Camundongos , Macrófagos/virologia , Ácido gama-Aminobutírico/metabolismo , Fígado/virologia , Fígado/metabolismo , Hepatite B/virologia , Hepatite B/metabolismo , Humanos , Modelos Animais de Doenças , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética
11.
Biomed Pharmacother ; 172: 116252, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325265

RESUMO

PURPOSE: Type 2 diabetes mellitus (T2DM) is associated with a greater risk of Alzheimer's disease. Synaptic impairment and protein aggregates have been reported in the brains of T2DM models. Here, we assessed whether neurodegenerative changes in synaptic vesicle 2 A (SV2A), γ-aminobutyric acid type A (GABAA) receptor, amyloid-ß, tau and receptor for advanced glycosylation end product (RAGE) can be detected in vivo in T2DM rats. METHODS: Positron emission tomography (PET) using [18F]SDM-8 (SV2A), [18F]flumazenil (GABAA receptor), [18F]florbetapir (amyloid-ß), [18F]PM-PBB3 (tau), and [18F]FPS-ZM1 (RAGE) was carried out in 12-month-old diabetic Zucker diabetic fatty (ZDF) and SpragueDawley (SD) rats. Immunofluorescence staining, Thioflavin S staining, proteomic profiling and pathway analysis were performed on the brain tissues of ZDF and SD rats. RESULTS: Reduced cortical [18F]SDM-8 uptake and cortical and hippocampal [18F]flumazenil uptake were observed in 12-month-old ZDF rats compared to SD rats. The regional uptake of [18F]florbetapir and [18F]PM-PBB3 was comparable in the brains of 12-month-old ZDF and SD rats. Immunofluorescence staining revealed Thioflavin S-negative, phospho-tau-positive inclusions in the cortex and hypothalamus in the brains of ZDF rats and the absence of amyloid-beta deposits. The level of GABAA receptors was lower in the cortex of ZDF rats than SD rats. Proteomic analysis further demonstrated that, compared with SD rats, synaptic-related proteins and pathways were downregulated in the hippocampus of ZDF rats. CONCLUSION: These findings provide in vivo evidence for regional reductions in SV2A and GABAA receptor levels in the brains of aged T2DM ZDF rats.


Assuntos
Compostos de Anilina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Etilenoglicóis , Radioisótopos de Flúor , Piridinas , Pirrolidinas , Ratos , Animais , Flumazenil/metabolismo , Receptores de GABA-A/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Vesículas Sinápticas/metabolismo , Proteômica , Ratos Zucker , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ácido gama-Aminobutírico/metabolismo
12.
CNS Neurosci Ther ; 30(2): e14583, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38357846

RESUMO

OBJECTIVE: To explore the mechanism involved in variable phenotypes of epilepsy models induced by γ-aminobutyric acid type A γ2 subunit (GABRG2) mutations. METHODS: The zebrafish carrying wild-type (WT) GABRG2, mutant GABRG2(P282S), GABRG2(F343L) and GABRG2(I107T) were established by Tol2kit transgenesis system and Gateway method. Behavioral analysis of different transgenic zebrafish was performed with the DanioVision Video-Track framework and the brain activity was analyzed by field potential recording with MD3000 Bio-signal Acquisition and Processing System. The transcriptome analysis was applied to detect the underlying mechanisms of variable phenotypes caused by different GABRG2 mutations. RESULTS: The established Tg(hGABRG2P282S ) zebrafish showed hyperactivity and spontaneous seizures, which were more sensitive to chemical and physical epileptic stimulations. Traditional antiepileptic drugs, such as Clonazepam (CBZ) and valproic acid (VPA), could ameliorate the hyperactivity in Tg(hGABRG2P282S ) zebrafish. The metabolic pathway was significantly changed in the brain transcriptome of Tg(hGABRG2P282S ) zebrafish. In addition, the behavioral activity, production of pro-inflammatory factors, and activation of the IL-2 receptor signal pathway varied among the three mutant zebrafish lines. CONCLUSION: We successfully established transgenic zebrafish epileptic models expressing human mutant GABRG2(P282S), in which CBZ and VPA showed antiepileptic effects. Differential inflammatory responses, especially the SOCS/JAK/STAT signaling pathway, might be related to the phenotypes of genetic epilepsy induced by GABRG2 mutations. Further study will expand the pathological mechanisms of genetic epilepsies and provide a theoretical basis for searching for effective drug treatment.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Humanos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Epilepsia/genética , Mutação/genética , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Fenótipo , Inflamação/genética
13.
Commun Biol ; 7(1): 225, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396202

RESUMO

Reduced inhibition by somatostatin-expressing interneurons is associated with depression. Administration of positive allosteric modulators of α5 subunit-containing GABAA receptor (α5-PAM) that selectively target this lost inhibition exhibit antidepressant and pro-cognitive effects in rodent models of chronic stress. However, the functional effects of α5-PAM on the human brain in vivo are unknown, and currently cannot be assessed experimentally. We modeled the effects of α5-PAM on tonic inhibition as measured in human neurons, and tested in silico α5-PAM effects on detailed models of human cortical microcircuits in health and depression. We found that α5-PAM effectively recovered impaired cortical processing as quantified by stimulus detection metrics, and also recovered the power spectral density profile of the microcircuit EEG signals. We performed an α5-PAM dose-response and identified simulated EEG biomarker candidates. Our results serve to de-risk and facilitate α5-PAM translation and provide biomarkers in non-invasive brain signals for monitoring target engagement and drug efficacy.


Assuntos
Depressão , Receptores de GABA-A , Humanos , Depressão/tratamento farmacológico , Receptores de GABA-A/metabolismo , Neurônios/metabolismo , Interneurônios/metabolismo , Encéfalo/metabolismo
14.
Transl Psychiatry ; 14(1): 107, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388464

RESUMO

Epidemiological investigations indicate that parental drug abuse experiences significantly influenced the addiction vulnerability of offspring. Studies using animal models have shown that paternal cocaine use and highly motivated drug-seeking behavior are important determinants of offspring addiction susceptibility. However, the key molecules contributing to offspring addiction susceptibility are currently unclear. The motivation for cocaine-seeking behavior in offspring of male rats was compared between those whose fathers self-administered cocaine (SA) and those who were yoked with them and received non-contingent cocaine administrations (Yoke). We found that paternal experience with cocaine-seeking behavior, but not direct cocaine exposure, could lead to increased lever-pressing behavior in male F1 offspring. This effect was observed without significant changes to the dose-response relationship. The transcriptomes of ventral tegmental area (VTA) in offspring were analyzed under both naive state and after self-administration training. Specific transcriptomic changes in response to paternal cocaine-seeking experiences were found, which mainly affected biological processes such as synaptic connections and receptor signaling pathways. Through joint analysis of these candidate genes and parental drug-seeking motivation scores, we found that gamma-aminobutyric acid receptor subunit gamma-3 (Gabrg3) was in the hub position of the drug-seeking motivation-related module network and highly correlated with parental drug-seeking motivation scores. The downregulation of Gabrg3 expression, caused by paternal motivational cocaine-seeking, mainly occurred in GABAergic neurons in the VTA. Furthermore, down-regulating GABAergic Gabrg3 in VTA resulted in an increase in cocaine-seeking behavior in the Yoke F1 group. This down-regulation also reduced transcriptome differences between the Yoke and SA groups, affecting processes related to synaptic formation and neurotransmitter transmission. Taken together, we propose that paternal cocaine-seeking behavior, rather than direct drug exposure, significantly influences offspring addiction susceptibility through the downregulation of Gabrg3 in GABAergic neurons of the VTA, highlighting the importance of understanding specific molecular pathways in the intergenerational inheritance of addiction vulnerability.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Ratos , Masculino , Animais , Humanos , Área Tegmentar Ventral , Motivação , Cocaína/efeitos adversos , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Pai , Autoadministração/métodos , Comportamento de Procura de Droga/fisiologia , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
15.
Sci Rep ; 14(1): 4169, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38379020

RESUMO

Gephyrin is the main scaffolding protein at inhibitory postsynaptic sites, and its clusters are the signaling hubs where several molecular pathways converge. Post-translational modifications (PTMs) of gephyrin alter GABAA receptor clustering at the synapse, but it is unclear how this affects neuronal activity at the circuit level. We assessed the contribution of gephyrin PTMs to microcircuit activity in the mouse barrel cortex by slice electrophysiology and in vivo two-photon calcium imaging of layer 2/3 (L2/3) pyramidal cells during single-whisker stimulation. Our results suggest that, depending on the type of gephyrin PTM, the neuronal activities of L2/3 pyramidal neurons can be differentially modulated, leading to changes in the size of the neuronal population responding to the single-whisker stimulation. Furthermore, we show that gephyrin PTMs have their preference for selecting synaptic GABAA receptor subunits. Our results identify an important role of gephyrin and GABAergic postsynaptic sites for cortical microcircuit function during sensory stimulation.


Assuntos
Proteínas de Membrana , Receptores de GABA-A , Vibrissas , Animais , Receptores de GABA-A/metabolismo , Vibrissas/metabolismo , Proteínas de Transporte/metabolismo , Células Piramidais/metabolismo , Sinapses/metabolismo
16.
Neuron ; 112(6): 942-958.e13, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38262414

RESUMO

Neurons express various combinations of neurotransmitter receptor (NR) subunits and receive inputs from multiple neuron types expressing different neurotransmitters. Localizing NR subunits to specific synaptic inputs has been challenging. Here, we use epitope-tagged endogenous NR subunits, expansion light-sheet microscopy, and electron microscopy (EM) connectomics to molecularly characterize synapses in Drosophila. We show that in directionally selective motion-sensitive neurons, different multiple NRs elaborated a highly stereotyped molecular topography with NR localized to specific domains receiving cell-type-specific inputs. Developmental studies suggested that NRs or complexes of them with other membrane proteins determine patterns of synaptic inputs. In support of this model, we identify a transmembrane protein selectively associated with a subset of spatially restricted synapses and demonstrate its requirement for synapse formation through genetic analysis. We propose that mechanisms that regulate the precise spatial distribution of NRs provide a molecular cartography specifying the patterns of synaptic connections onto dendrites.


Assuntos
Conectoma , Sinapses/fisiologia , Neurônios Motores/metabolismo , Microscopia Eletrônica , Receptores de GABA-A/metabolismo
17.
J Neurosci ; 44(7)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38176909

RESUMO

Approximately one-third of neonatal seizures do not respond to first-line anticonvulsants, including phenobarbital, which enhances phasic inhibition. Whether enhancing tonic inhibition decreases seizure-like activity in the neonate when GABA is mainly depolarizing at this age is unknown. We evaluated if increasing tonic inhibition using THIP [4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, gaboxadol], a δ-subunit-selective GABAA receptor agonist, decreases seizure-like activity in neonatal C57BL/6J mice (postnatal day P5-8, both sexes) using acute brain slices. Whole-cell patch-clamp recordings showed that THIP enhanced GABAergic tonic inhibitory conductances in layer V neocortical and CA1 pyramidal neurons and increased their rheobase without altering sEPSC characteristics. Two-photon calcium imaging demonstrated that enhancing the activity of extrasynaptic GABAARs decreased neuronal firing in both brain regions. In the 4-aminopyridine and the low-Mg2+ model of pharmacoresistant seizures, THIP reduced epileptiform activity in the neocortex and CA1 hippocampal region of neonatal and adult brain slices in a dose-dependent manner. We conclude that neocortical layer V and CA1 pyramidal neurons have tonic inhibitory conductances, and when enhanced, they reduce neuronal firing and decrease seizure-like activity. Therefore, augmenting tonic inhibition could be a viable approach for treating neonatal seizures.


Assuntos
Neocórtex , Receptores de GABA-A , Camundongos , Animais , Masculino , Feminino , Animais Recém-Nascidos , Receptores de GABA-A/metabolismo , Camundongos Endogâmicos C57BL , Neocórtex/fisiologia , Agonistas de Receptores de GABA-A/farmacologia , Convulsões/tratamento farmacológico , Ácido gama-Aminobutírico/farmacologia , Ácido gama-Aminobutírico/fisiologia , Hipocampo/metabolismo , Inibição Neural/fisiologia
18.
Eur J Pharmacol ; 966: 176342, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38290569

RESUMO

The transition of acute kidney injury (AKI) to chronic kidney disease (CKD) is characterized by intense inflammation and progressive fibrosis. Remimazolam is widely used for procedural sedation in intensive care units, such as AKI patients. Remimazolam has been shown to possess anti-inflammatory and organ-protective properties. However, the role of remimazolam in inflammation and renal fibrosis following AKI remains unclear. Here, we explored the effects of remimazolam on the inflammatory response and kidney fibrogenesis of mice subjected to folic acid (FA) injury. Our results showed that remimazolam treatment alleviated kidney damage and dysfunction. Mice treated with remimazolam presented less collagen deposition in FA-injured kidneys compared with FA controls, which was accompanied by a reduction of extracellular matrix proteins accumulation and fibroblasts activation. Furthermore, remimazolam treatment reduced inflammatory cells infiltration into the kidneys of mice with FA injury and inhibited proinflammatory or profibrotic molecules expression. Finally, remimazolam treatment impaired the activation of bone marrow-derived fibroblasts and blunted the transformation of macrophages to myofibroblasts in FA nephropathy. Additionally, the benzodiazepine receptor antagonist PK-11195 partially reversed the protective effect of remimazolam on the FA-injured kidneys. Overall, remimazolam attenuates the inflammatory response and renal fibrosis development following FA-induced AKI, which may be related to the peripheral benzodiazepine receptor pathway.


Assuntos
Injúria Renal Aguda , Benzodiazepinas , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Receptores de GABA-A/metabolismo , Rim , Insuficiência Renal Crônica/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/induzido quimicamente , Inflamação/metabolismo , Fibrose , Camundongos Endogâmicos C57BL
19.
ACS Chem Neurosci ; 15(3): 517-526, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38175916

RESUMO

KRM-II-81 (1) is an imidazodiazepine GABAA receptor (GABAAR) potentiator with broad antiseizure efficacy and a low sedative burden. A brominated analogue, DS-II-73 (5), was synthesized and pharmacologically characterized as a potential backup compound as KRM-II-81 moves forward into development. The synthesis from 2-amino-5-bromophenyl)(pyridin-2yl)methanone (6) was processed in five steps with an overall yield of 38% and without the need for a palladium catalyst. GABAAR binding occurred with a Ki of 150 nM, and only 3 of 41 screened binding sites produced inhibition ≥50% at 10 µM, and the potency to induce cytotoxicity was ≥240 mM. DS-II-73 was selective for α2/3/5- over that of α1-containing GABAARs. Oral exposure of plasma and brain of rats was more than sufficient to functionally impact GABAARs. Tonic convulsions in mice and lethality induced by pentylenetetrazol were suppressed by DS-II-73 after oral administration and latencies to clonic and tonic seizures were prolonged. Cortical slice preparations from a patient with pharmacoresistant epilepsy (mesial temporal lobe) showed decreases in the frequency of local field potentials by DS-II-73. As with KRM-II-81, the motor-impairing effects of DS-II-73 were low compared to diazepam. Molecular docking studies of DS-II-73 with the α1ß3γ2L-configured GABAAR showed low interaction with α1His102 that is suggested as a potential molecular mechanism for its low sedative side effects. These findings support the viability of DS-II-73 as a backup molecule for its ethynyl analogue, KRM-II-81, with the human tissue data providing translational credibility.


Assuntos
Epilepsia do Lobo Temporal , Camundongos , Humanos , Ratos , Animais , Epilepsia do Lobo Temporal/tratamento farmacológico , Receptores de GABA-A/metabolismo , Simulação de Acoplamento Molecular , Convulsões/tratamento farmacológico , Oxazóis/farmacologia , Encéfalo/metabolismo , Hipnóticos e Sedativos/uso terapêutico , Redes Neurais de Computação , Anticonvulsivantes/farmacologia
20.
Comput Biol Med ; 169: 107958, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194778

RESUMO

BACKGROUND: Over the past few decades, agonists binding to the benzodiazepine site of the GABAA receptor have been successfully developed as clinical drugs. Different modulators (agonist, antagonist, and reverse agonist) bound to benzodiazepine sites exhibit different or even opposite pharmacological effects, however, their structures are so similar that it is difficult to distinguish them based solely on molecular skeleton. This study aims to develop classification models for predicting the agonists. METHODS: 306 agonists or non-agonists were collected from literature. Six machine learning algorithms including RF, XGBoost, AdaBoost, GBoost, SVM, and ANN algorithms were employed for model development. Using six descriptors including 1D/2D Descriptors, ECFP4, 2D-Pharmacophore, MACCS, PubChem, and Estate fingerprint to characterize chemical structures. The model interpretability was explored by SHAP method. RESULTS: The best model demonstrated an AUC value of 0.905 and an MCC value of 0.808 for the test set. The PubMac-based model (PubMac-GB) achieved best AUC values of 0.935 for test set. The SHAP analysis results emphasized that MaccsFP62, ECFP_624, ECFP_724, and PubchemFP213 were the crucial molecular features. Applicability domain analysis was also performed to determine reliable prediction boundaries for the model. The PubMac-GB model was applied to virtual screening for potential GABAA agonists and the top 100 compounds were given. CONCLUSION: Overall, our ensemble learning-based model (PubMac-GB) achieved comparable performance and would be helpful in effectively identifying agonists of GABAA receptors.


Assuntos
Agonistas de Receptores de GABA-A , Receptores de GABA-A , Receptores de GABA-A/metabolismo , Benzodiazepinas , Aprendizado de Máquina , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...